算法学习七、排序(上)

一、如何分析一个排序算法

1.1 排序算法的执行效率

1.1.1 最好、最坏、平均时间复杂度

在分析排序算法的时间复杂度时,要分别给出最好情况、最坏情况、平均情况下的时间复杂度。除此之外,还要说出最好、最坏时间复杂度对应的要排序的原始数据是什么样的。

为什么要区分这三种时间复杂度呢?第一,有些排序算法会区分,为了好对比,所以我们最好都做一下区分。第二,对于要排序的数据,有的接近有序,有的完全无序。有序度不同的数据,对于排序的执行时间肯定是有影响的,我们要知道排序算法在不同数据下的性能表现。

1.1.2 时间复杂度的系数、常数、低阶

时间复杂度反应的是数据规模 n 很大的时候的一个增长趋势,所以它表示的时候会忽略系数、常数、低阶。但是实际的软件开发中,我们排序的可能是 10 个、100 个、1000 个这样规模很小的数据,所以,在对同一阶时间复杂度的排序算法性能对比的时候,我们就要把系数、常数、低阶也考虑进来。

1.1.3 比较次数和交换次数

基于比较的排序算法的执行过程,会涉及两种操作,一种是元素比较大小,另一种是元素交换或移动。所以,如果我们在分析排序算法的执行效率的时候,应该把比较次数和交换(或移动)次数也考虑进去。

1.2 排序算法的内存消耗

针对排序算法的空间复杂度,我们还引入了一个新的概念,原地排序(Sorted in place)。原地排序算法,就是特指空间复杂度是 O(1) 的排序算法。

1.3 排序算法的稳定性

稳定性,这个概念是说,如果待排序的序列中存在值相等的元素,经过排序之后,相等元素之间原有的先后顺序不变。

比如说,我们现在要给电商交易系统中的“订单”排序。订单有两个属性,一个是下单时间,另一个是订单金额。如果我们现在有 10 万条订单数据,我们希望按照金额从小到大对订单数据排序。对于金额相同的订单,我们希望按照下单时间从早到晚有序。对于这样一个排序需求,我们怎么来做呢?

最先想到的方法是:我们先按照金额对订单数据进行排序,然后,再遍历排序之后的订单数据,对于每个金额相同的小区间再按照下单时间排序。这种排序思路理解起来不难,但是实现起来会很复杂。

借助稳定排序算法,这个问题可以非常简洁地解决。解决思路是这样的:我们先按照下单时间给订单排序,注意是按照下单时间,不是金额。排序完成之后,我们用稳定排序算法,按照订单金额重新排序。两遍排序之后,我们得到的订单数据就是按照金额从小到大排序,金额相同的订单按照下单时间从早到晚排序的。为什么呢?

稳定排序算法可以保持金额相同的两个对象,在排序之后的前后顺序不变。第一次排序之后,所有的订单按照下单时间从早到晚有序了。在第二次排序中,我们用的是稳定的排序算法,所以经过第二次排序之后,相同金额的订单仍然保持下单时间从早到晚有序。

二、冒泡排序

冒泡排序只会操作相邻的两个数据。每次冒泡操作都会对相邻的两个元素进行比较,看是否满足大小关系要求。如果不满足就让它俩互换。一次冒泡会让至少一个元素移动到它应该在的位置,重复 n 次,就完成了 n 个数据的排序工作。

算法实现:

public function bubbleSort($arr)
{
    for ($i = 0, $count = count($arr); $i < $count; $i++) {
        $flag = true;
        for ($j = 0; $j < $count - $i - 1; $j++) {
            if ($arr[$j] > $arr[$j + 1]) {
                $flag = false;
                $tmp = $arr[$j];
                $arr[$j] = $arr[$j + 1];
                $arr[$j + 1] = $tmp;
            }
        }
        if ($flag) {
            break;
        }
    }
    return $arr;
}

冒泡排序是原地排序算法吗?

冒泡的过程只涉及相邻数据的交换操作,只需要常量级的临时空间,所以它的空间复杂度为 O(1),是一个原地排序算法。

冒泡排序是稳定的排序算法吗?

在冒泡排序中,只有交换才可以改变两个元素的前后顺序。为了保证冒泡排序算法的稳定性,当有相邻的两个元素大小相等的时候,我们不做交换,相同大小的数据在排序前后不会改变顺序,所以冒泡排序是稳定的排序算法。

冒泡排序的时间复杂度是多少?

最好情况下,要排序的数据已经是有序的了,我们只需要进行一次冒泡操作,就可以结束了,所以最好情况时间复杂度是 O(n)。而最坏的情况是,要排序的数据刚好是倒序排列的,我们需要进行 n 次冒泡操作,所以最坏情况时间复杂度为 O(n^2)。

通过“有序度”和“逆序度”这两个概念来进行分析平均时间复杂度。有序度是数组中具有有序关系的元素对的个数。

有序元素对:a[i] <= a[j], 如果i < j。

对于一个完全有序的数组,有序度就是 n*(n-1)/2,称为满有序度。

逆序度 = 满有序度 – 有序度

冒泡排序包含两个操作原子,比较交换。每交换一次,有序度就加 1。不管算法怎么改进,交换次数总是确定的,即为逆序度。最坏情况下,初始状态的有序度是 0,所以要进行 n*(n-1)/2 次交换最好情况下,初始状态的有序度是 n*(n-1)/2,就不需要进行交换。我们可以取个中间值 n*(n-1)/4。平均情况下,需要 n*(n-1)/4 次交换操作,比较操作肯定要比交换操作多,而复杂度的上限是 O(n^2),所以平均情况下的时间复杂度就是 O(n^2)。

三、插入排序

首先,我们将数组中的数据分为两个区间,已排序区间和未排序区间。初始已排序区间只有一个元素,就是数组的第一个元素。插入算法的核心思想是取未排序区间中的元素,在已排序区间中找到合适的插入位置将其插入,并保证已排序区间数据一直有序。重复这个过程,直到未排序区间中元素为空,算法结束。

插入排序也包含两种操作,一种是元素的比较,一种是元素的移动。当我们需要将一个数据 a 插入到已排序区间时,需要拿 a 与已排序区间的元素依次比较大小,找到合适的插入位置。找到插入点之后,我们还需要将插入点之后的元素顺序往后移动一位,这样才能腾出位置给元素 a 插入。

代码实现:

public function insertionSort($arr)
{
    for ($i = 1, $count = count($arr); $i < $count; $i++) {
        $value = $arr[$i];
        $j = $i - 1;
        for (; $j >= 0; --$j) {
            if ($arr[$j] > $value) {
                $arr[$j + 1] = $arr[$j];
            } else {
                break;
            }
        }
        $arr[$j + 1] = $value;
    }
    return $arr;
}

插入排序是原地排序算法吗?

从实现过程可以很明显地看出,插入排序算法的运行并不需要额外的存储空间,所以空间复杂度是 O(1),也就是说,这是一个原地排序算法。

插入排序是稳定的排序算法吗?

在插入排序中,对于值相同的元素,我们可以选择将后面出现的元素,插入到前面出现元素的后面,这样就可以保持原有的前后顺序不变,所以插入排序是稳定的排序算法。

插入排序的时间复杂度是多少?

如果要排序的数据已经是有序的,我们并不需要搬移任何数据。如果我们从尾到头在有序数据组里面查找插入位置,每次只需要比较一个数据就能确定插入的位置。所以这种情况下,最好是时间复杂度为 O(n)。注意,这里是从尾到头遍历已经有序的数据。如果数组是倒序的,每次插入都相当于在数组的第一个位置插入新的数据,所以需要移动大量的数据,所以最坏情况时间复杂度为 O(n^2)。还记得我们在数组中插入一个数据的平均时间复杂度是多少吗?没错,是 O(n)。所以,对于插入排序来说,每次插入操作都相当于在数组中插入一个数据,循环执行 n 次插入操作,所以平均时间复杂度为 O(n^2)。

四、选择排序

选择排序算法的实现思路有点类似插入排序,也分已排序区间和未排序区间。但是选择排序每次会从未排序区间中找到最小的元素,将其放到已排序区间的末尾。

首先,选择排序空间复杂度为 O(1),是一种原地排序算法。选择排序的最好情况时间复杂度、最坏情况和平均情况时间复杂度都为 O(n^2)。

选择排序是一种不稳定的排序算法,选择排序每次都要找剩余未排序元素中的最小值,并和前面的元素交换位置,这样破坏了稳定性。

比如 5,8,5,2,9 这样一组数据,使用选择排序算法来排序的话,第一次找到最小元素 2,与第一个 5 交换位置,那第一个 5 和中间的 5 顺序就变了,所以就不稳定了。正是因此,相对于冒泡排序和插入排序,选择排序就稍微逊色了。

五、为什么插入排序比冒泡排序更受欢迎呢

冒泡排序不管怎么优化,元素交换的次数是一个固定值,是原始数据的逆序度。插入排序是同样的,不管怎么优化,元素移动的次数也等于原始数据的逆序度。但是,从代码实现上来看,冒泡排序的数据交换要比插入排序的数据移动要复杂,冒泡排序需要 3 个赋值操作,而插入排序只需要 1 个。

经测试,随机生成 10000 个数组,每个数组拥有 200 个元素,在本地分别用冒泡排序与插入排序算法来排序,插入排序的速度比冒泡排序快 1 倍以上。